Stable Messenger Ribonucleic Acid and Germination of Myxococcus xanthus Microcysts

AUTOR(ES)
RESUMO

We have examined germination, protein synthesis and ribonucleic acid (RNA) synthesis by microcysts of the fruiting myxobacterium Myxococcus xanthus. The morphological aspects of microcyst formation were completed at about 2 hr after induction had begun. In such microcysts, germination, RNA synthesis, and protein synthesis were inhibited by actinomycin D (Act D). At 6 hr after induction, germination and protein synthesis had become relatively resistant to Act D, whereas RNA synthesis was inhibited by about 95%. Experiments with 3H-Act D indicated that the deoxyribonucleic acids of both young and old microcysts bind Act D equally. Resistance of germination to Act D was acquired 4 to 5 hr after induction of microcyst formation, and was due to an Act D-sensitive synthesis at that time. Vegetative cells and microcysts were pulsed with uridine-5-3H and chased for 60 min; the RNA was extracted and analyzed by means of sucrose density gradient centrifugation and gel electrophoresis. Both microcysts and vegetative cells were found to contain grossly the same types of RNA in the same proportions. RNA pulse-labeled in microcysts was more stable than that in vegetative cells. No particular portions of the microcyst pulse-labeled RNA were selectively stabilized. These data indicate that a stable messenger RNA required for synthesis of germination proteins was synthesized during microcyst formation. This may be the same as the RNA synthesized 4 to 5 hr after initiation of microcyst formation. We suggest that the existence of such stable messenger RNA in microcysts is consistent with the limited biosynthetic activities of such cells.

Documentos Relacionados