Stimulation of afferent fibres of the guinea-pig ureter evokes potentials in inferior mesenteric ganglion neurones.

AUTOR(ES)
RESUMO

1. Intracellular recordings were made from neurones of the guinea-pig inferior mesenteric ganglion (IMG) maintained in vitro with both ureters and major nerve trunks attached. Afferent fibres in the ureteric nerve were activated by electrical, chemical and mechanical stimuli. 2. Repetitive stimulation of a ureteric nerve branch evoked a non-cholinergic, synaptic slow excitatory potential (slow EPSP) in 48% of neurons. The amplitude of the slow EPSP was dependent on membrane potential and was decreased by membrane depolarization and increased by hyperpolarization. 3. The slow EPSP was attenuated or abolished by capsaicin (1 microM), which itself depolarized IMG neurones. Substance P (2 microM) or neurokinin A (2 microM) also depolarized IMG neurones and in the presence of these tachykinins the slow EPSP was attenuated or abolished. 4. Distension of the ureter evoked a non-cholinergic slow depolarization in 45% of IMG neurones which was abolished by tetrodotoxin (1 microM) and by capsaicin (1 microM). 5. Chemical stimulation of ureteric afferent nerve terminals by intralumenal perfusions of the ureter with capsaicin (1 microM) produced a slow depolarization in the IMG which was prevented by blocking nerve conduction with TTX. 6. These data demonstrate that electrical stimulation of ureteric afferent fibres produces a non-cholinergic slow EPSP in the IMG. Primary afferent (capsaicin-sensitive) C fibres are also activated by distension of the ureter and evoke a slow depolarization in the IMG. The synaptic mediator of these events is likely to be tachykinin(s) released from capsaicin-sensitive C fibres. These fibres may be mechanosensory and/or nociceptive.

Documentos Relacionados