Streptococcus pyogenes clinical isolates and lipoteichoic acid.

AUTOR(ES)
RESUMO

Minimally subcultured clinical isolates of virulent nephritogenic and nonnephritogenic Streptococcus pyogenes of the same serotype showed major differences in lipoteichoic acid (LTA) production, secretion, and structure. These were related to changes in coccal adherence to and destruction of growing human skin cell monolayers in vitro. A possible relationship between cellular LTA content and group A streptococcal surface hydrophobicity was also investigated. Nephritogenic S. pyogenes M18 produced twice as much total (i.e., cellular and secretory) LTA as did the virulent, serologically identical, but nonnephritogenic isolate. Also, the LTAs from these organisms differed markedly. The polyglycerol phosphate chain of LTA from the nephritogenic isolate was longer (1.6 times) than was that from the nonnephritogenic isolate. Likewise, both LTAs indicated the presence of alanine and the absence of glucose. Amino sugars were found in LTA from only nephritogenic S. pyogenes. Teichoic acid, as a cellular component or secretory product, was not detected. The adherence of two different nephritogenic group A streptococcal serotypes (M18 and M2) exceeded that of the serologically identical but nonnephritogenic isolates (by about five times), indicating a correlation between virulent strains causing acute glomerulonephritis and adherence to human skin cell monolayers. Likewise, LTA from nephritogenic S. pyogenes M18 was more cytotoxic (1.5 times) than was that from the nonnephritogenic isolate for human skin cells, as determined by protein release. This difference was not perceptible by the more sensitive dye exclusion method (i.e., requiring less LTA), which emphasizes changes in host cell morphology and death. Also, the secretion of LTA by only virulent nephritogenic S. pyogenes M18 was exacerbated by penicillin (a maximum of four times). Finally, while the adherence of nephritogenic S. pyogenes M18 decreased markedly after continued subculturing in vitro, the surface hydrophobicity did not.

Documentos Relacionados