Studies of Sulfate Utilization by Algae: 8. The Ubiquity of Sulfate Reduction to Thiosulfate 1

AUTOR(ES)
RESUMO

Cell-free extracts from several microorganisms, when prepared by methods originally devised for Chlorella pyrenoidosa (Emerson strain 3) and incubated anaerobically with ATP, Mg2+, and 2, 3-dimercaptopropan-1-ol, are capable of reducing sulfate-35S to thiosulfate. These microorganisms include, in addition to C. pyrenoidosa (Emerson strain 3), several other strains of C. pyrenoidosa, Chlorella protothecoides, Chlorella vulgaris, Anacystis sp., Chlamydomonas reinhardi, Escherichia coli, Salmonella typhimurium, and baker's yeast. Three of these organisms, E. coli, S. typhimurium, and baker's yeast, were previously reported by others to reduce sulfate to sulfite. Moreover, three mutant strains of S. typhimurium (Ba-25, Ce-363, and Bc-482) previously reported by other workers to be unable to reduce sulfate to sulfite also cannot form thiosulfate, and one mutant strain (Cd-68) reportedly able to form sulfite can also form thiosulfate. Taken together, this suggests that thiosulfate-forming activity may be a common feature of sulfate-reducing systems, and it may be present in enzymatic systems previously thought to be forming sulfite. Reasonably conclusive identification of thiosulfate is provided by ion exchange chromatography and by paper electrophoresis; the ambiguities associated with other analytical methods are discussed.

Documentos Relacionados