Studies on emerging radiation leukemia virus variants in C57BL/Ka mice.

AUTOR(ES)
RESUMO

To analyze the emergence of radiation leukemia virus (RadLV) variants in primary X-ray-induced C57BL/Ka thymoma and to identify the virus responsible for the very high leukemogenic potential of passaged Kaplan strain BL/VL3 preparation, we cloned several primary and passaged ecotropic RadLV infectious genomes. By restriction analysis, we found that BL/VL3 cells harbor three related but different ecotropic RadLVs. Their restriction map differs significantly from those of primary RadLVs. Hybridization analysis also indicated that BL/VL3 and primary RadLVs differ in their p15E and long terminal repeat (LTR) regions. As compared with the LTR sequence of the putative parental endogenous ecotropic provirus, the LTR sequence of primary weakly leukemogenic RadLV has only one change, a C-rich sequence, generating a 6-base-pair direct repeat just in front of the promotor. The LTR of the primary nonleukemogenic RadLV only showed few base changes, mainly clustered in R and U5. The LTR from a moderately leukemogenic passaged BL/VL3 RadLV had conserved the C-rich sequence and acquired a 43-base-pair direct repeat in U3 and several other point mutations, small insertions, and deletions scattered in U3, R, and U5. All cloned primary RadLVs were fibrotropic, and some were weakly leukemogenic. All cloned BL/VL3 RadLVs were thymotropic and nonfibrotropic. The block of their replication was found to be after the synthesis of unintegrated linear and supercoiled viral DNA. Most of the BL/VL3 RadLVs were moderately leukemogenic, and one (V-13) was highly leukemogenic, being as virulent as the Moloney strain. We propose a model for the emergence of the RadLV variants and show that the virus responsible for the high leukemogenic potential of BL/VL3 preparation is a nondefective, ecotropic, lymphotropic, nonfibrotropic, unique retrovirus which most likely arose from a parental primary RadLV similar to those studied here.

Documentos Relacionados