Subclass and molecular form of immunoglobulin A antibodies to Actinobacillus actinomycetemcomitans in juvenile periodontitis.

AUTOR(ES)
RESUMO

Patients with juvenile periodontitis frequently have elevated levels of serum immunoglobulin A (IgA) antibodies to antigens of Actinobacillus actinomycetemcomitans. IgA occurs in two subclasses, IgA1 and IgA2, and in monomeric and polymeric forms. Because IgA1 is susceptible to cleavage by IgA1 proteases produced by microorganisms found at mucosal sites and in the gingival crevice, we wished to determine the IgA subclass distribution of antibodies to antigens of A. actinomycetemcomitans. The molecular form was examined because it may indicate the origin of the IgA and because the form differs in acute and chronic infections. There is also evidence that monomeric and polymeric IgA have different biological functions. Serum was taken from patients with juvenile periodontitis before and at intervals during and after initiation of therapy. IgA subclass distribution was determined against a sonic extracts of A. actinomycetemcomitans ATCC 2952a (serotype b) by using monoclonal anti-subclass reagents in an enzyme-linked immunosorbent assay. To determine the molecular form of the antibodies, sera were separated by high-performance liquid chromatography on a size-exclusion column. Fractions were assayed for antibody activity by the enzyme-linked immunosorbent assay, and described above. The results of the subclass analysis of the sera indicated that while both IgA1 and IgA2 antibodies to A. actinomycetemcomitans sonic extract are often found before, during, and after treatment, IgA1 antibodies dominated the response. There was a predominance of monomeric IgA1 antibodies to A. actinomycetemcomitans sonic extracts in most samples before, during, and after treatment. The monomeric form is consistent with what is seen in other chronic infections. The predominance of IgA1 antibodies implies that any protective effects of the IgA response to A. actinomycetemcomitans could be compromised by microbial IgA1 proteases.

Documentos Relacionados