Substrate Specificities of N-Acetylglucosaminyl-, Fucosyl-, and Xylosyltransferases that Modify Glycoproteins in the Golgi Apparatus of Bean Cotyledons 1

AUTOR(ES)
RESUMO

As part of their posttranslational maturation process, newly synthesized glycoproteins that contain N-linked oligosaccharide side chains pass through the Golgi apparatus, where some of their oligosaccharides become modified by carbohydrate processing reactions. In this paper, we report the presence of Golgi-localized enzymes in plant cells (Phaseolus vulgaris cotyledons) that transfer GlcNAc, fucosyl, and xylosyl residues to the oligosaccharide side chains of glycoproteins. All three enzyme activities are involved in the transformation of high mannose side chains into complex glycans. As judged by acceptor specificity studies, at least two GlcNAc residues can be added to the nonreducing side of high mannose oligosaccharides, which have been trimmed by α-mannosidase(s). A Man5(GlcNAc)2-peptide serves as the acceptor for the first GlcNAc added. The second GlcNAc can be added only after the prior removal of two additional mannose residues, ultimately yielding (GlcNAc)2Man3(GlcNAc)2-peptide. Fucosyltransferase can transfer fucose to GlcNAcMan5(GlcNAc)2Asn, GlcNAcMan3(GlcNAc)2Asn, and (GlcNAc)2Man3(GlcNAc)2Asn; xylosyltransferase exhibits significant activity toward the latter two substrates only. These results suggest an overlapping sequence of oligosaccharide modification in the Golgi apparatus that, in regard to GlcNAc and fucose additions, is analogous to pathways of oligosaccharide processing reported for animal cells. To our knowledge, this is the first report characterizing a xylosyltransferase involved in N-linked oligosaccharide modification, an activity that is apparently absent in most animal cells.

Documentos Relacionados