Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties; exocytosis and insertion of a core proteoglycan into the extracellular matrix.

AUTOR(ES)
RESUMO

The three populations of synaptic vesicles in electromotor nerve terminals were analysed quantitatively. Empty vesicles (VP0), fully charged vesicles (VP1) and charged but smaller VP2-type vesicles are present in approximately equal amounts in the nerve terminal. The populations show differences in the kinetics of in vitro uptake of acetylcholine, ATP and Ca2+. VP0 and VP2 accumulate acetylcholine and ATP but no Ca2+, whereas VP1 shows negligible acetylcholine and ATP but high Ca2+ uptake. Thus the expression of uptake properties of this secretory organelle depend on the stage it has reached in its life cycle and might constitute a signal for processing. VP2 was found to contain much less core proteoglycan than VP0 and VP1 indicating that part of it has been lost by exocytosis. In synaptic extracellular matrix containing fractions an antigen is detectable that cross-reacts with an antiserum against the vesicle proteoglycan. This material elutes upon gel filtration in a position similar to a smaller form of proteoglycan found in vesicles. We conclude that the electromotor nerve terminal releases a proteoglycan by the regulated secretory pathway that is deposited in the extracellular matrix. It might have a function in keeping pre- and postsynaptic structures in alignment constituting a transsynaptic signal. Based on the findings described, a model of the vesicles' life-cycle is discussed, whereby the VP2 population is the major source of quantal release of acetylcholine.

Documentos Relacionados