Synthesis and processing of the three major envelope glycoproteins of Epstein-Barr virus.

AUTOR(ES)
RESUMO

In pulse-chase experiments, the three major Epstein-Barr virus envelope glycoproteins, gp350/300, gp250/200, and gp85, were shown to be synthesized from separate precursors of 190,000, 160,000, and 83,000 daltons, respectively. These three pulse-labeled species were chased into the mature forms of the glycoproteins between 1 and 3 h after transfer to nonradioactive medium. Digestion of precursor forms with endo-beta-N-acetylglucosaminidase H (endo H) yielded polypeptides of 160,000, 120,000, and 75,000 daltons. Comparison of these results with those from experiments with tunicamycin, which specifically blocks N-linked glycosylation, indicated that some other post-translational modification(s), probably O-linked glycosylation, contributes about 100,000 and 60,000 daltons of apparent molecular mass to gp350/300 and gp250/200, respectively. Experiments with endo H showed that mature gp350/300 and gp250/200 contain complex-type (endo H-resistant) N-linked glycosyl chains, whereas gp85 contains both high-mannose (endo H-sensitive)- and complex-type oligosaccharides. In contrast to the results obtained with the three envelope glycoproteins, no precursor forms of the two unglycosylated protein, p160 (the major Epstein-Barr virus capsid antigen) and p140 (an envelope protein), were detected. The partial proteolytic maps of gp350/300 and gp250/200 were quite similar, suggesting that polypeptide sequence homology could account for at least part of the observed serological cross-reactivity of the two proteins. Taken together, these results demonstrate that the polypeptide portions of gp350/300 and gp250/200 are closely related but not derived from a common precursor. Furthermore, the polypeptide portions comprise half or less of the apparent molecular weight of the mature glycoproteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Documentos Relacionados