Synthesis of biodegradative threonine dehydratase in Escherichia coli: role of amino acids, electron acceptors, and certain intermediary metabolites.

AUTOR(ES)
RESUMO

The specific activity of inducible biodegradative threonine dehydratase (EC 4.2.1.16) in Escherichia coli K-12 increased significantly when the standard tryptone-yeast extract medium or a synthetic mixture of 18 L-amino acids was supplemented with 10 mM KNO3 or 50 mM fumarate and with 4 mM cyclic AMP. In absolute terms, almost four times as much enzyme was produced in the amino acid medium as in the tryptone-yeast extract medium. Enzyme induction in the amino acid medium was sensitive to catabolite repression by glucose, gluconate, glycerol, and pyruvate. An analysis of amino acid requirements for enzyme induction showed that a combination of only four amino acids, threonine, serine, valine, and isoleucine, produced high levels of threonine dehydratase provided that both fumarate and cyclic AMP were present. Immunochemical data revealed that the enzyme synthesized in the presence of these four amino acids was indistinguishable from that produced in the tryptone-yeast extract or the medium with 18 amino acids. We interpret these results to mean that not the amino acids themselves but some metabolites derived anaerobically in reactions involving an electron acceptor may function as putative regulatory molecule(s) in the anaerobic induction of this enzyme.

Documentos Relacionados