Termodinamica estatistica de sistemas dissipativos : aspectos gerais e aplicação em plasma fotoinjetado em semicondutores

AUTOR(ES)
DATA DE PUBLICAÇÃO

1997

RESUMO

O objetivo principal do trabalho desenvolvido nesta tese consiste no estudo de alguns aspectos da Termodinâmica de sistemas abertos (dissipativos). Muitos sistemas mantidos longe do equilíbrio termodinâmico são governados por leis cinéticas não lineares, uma condição fundamental para o comportamento dito complexo surgir. A este grupo pertence a maioria dos sistemas nas ciências naturais especialmente na Física, na Química e na Biologia. Recorremos ao uso da emergente Termodinâmica Estatística Informacional (TEI), que está baseada no fonnalismo de ensemble de não equilíbrio conhecido como o Método do Operador Estatístico de Não-Equilíbrio (MOENE). Este método oferece bases microscópicas (mecano-estatísticas) para a construção de uma teoria cinética quântica não-linear . Desenvolvemos estudos adicionais da TEI baseada no MOENE, o que consistiu principalmente na determinação do espectro de autovalores do Operador de Entropia Estatística Informacional, uma quantidade que joga um papel central no MOENE. Consideramos sistemas descritos em termos de operadores de partículas individuais e obtivemos uma forma generalizada para a Entropia Informacional do sistema. Deduzimos expressões para a matriz dinâmica de Wigner-Landau e, em particular, para as funções de distribuição de não equilíbrio de quasi-partículas. Como uma aplicação do método a sistemas de grande interesse em fisica do estado sólido, temos desenvolvido e estudado em detalhe a termodinâmica irreversível e as propriedades ópticas de semicondutores polares sob a ação contínua de radiação eletromagnética na região do ultravioleta. O MOENE nos permitiu estudar , ao nível estatístico microscópico, os processos dissipativos no sistema e obter as equações quânticas de transporte para as quantidades relevantes. Consideramos o caso de materiais em volume (tridimensional) e fios quânticos (quasi-unidimensional). Na versão da teoria para sistemas homogêneos estudamos a termodinâmica dos estados estacionários e fizemos uso da generalização (na TEI) do critério de evolução de Glansdorff-Prigogine para determinar o comportamento temporal assintótico da densidade de partículas e energia no semicondutor. Estudamos os mecanismos de relaxação e excitação envolvidos, mostrando a relevância da interação de Fröhlich no processo de dissipação de energia. Mostramos que os estados estacionários são estáveis sob qualquer condição de não equilíbrio e que, neste caso, o teorema de mínima produção de entropia informacional é valido ainda fora do regime linear perto do equilíbrio. Fazendo uso da versão mais geral da teoria, que permite tratar sistemas não-homogêneos, estudamos o comportamento temporal e espacial da densidade de carga no sistema deportadores. Obtivemos equações de transporte para a matriz de Wigner-Landau e uma expressão geral da função dielétrica de não-equilíbrio que contém, em particular , a interação entre os portadores e os fônons longitudinais ópticos. O estudo da seção eficaz de espalhamento Raman eletrônico nos permitiu identificar o conjunto de excitações elementares presentes no sistema em condições de não equilíbrio. Caraterizamos dois modos coletivos de oscilação, identificados como os plasmons óptico e acústico, e duas bandas caraterísticas das excitações de partículas individuais (de elétrons e buracos). Mostramos que a função dielétrica estática se pode anular a altas intensidades de radiação, o que está relacionado a uma instabilidade do estado espacialmente homogêneo de densidade de carga. Nesta instabilidade ( ou bifurcação das soluções estacionárias) surge, no sistema, uma estrutura espacial de densidade estacionária de carga devido a um processo de auto-organização do sistema de elétrons assistido pela interação Coulombiana. Cálculos numéricos mostram, não obstante, que esta transição não pode ser observada experimentalmente devido à alta intensidade de radiação requerida. No estudo de semicondutores quasi-unidimensionais, estudamos os estados homogêneos e não homogêneos obtendo uma expressão para a densidade fotoinjetada como função da intensidade do campo de radiação. Foi determinada a dependência da densidade com a temperatura e o diâmetro do fio. A análise numérica do espectro Raman eletrônico nos permitiu identificar as excitações elementares no sistema. Como no caso tridimensional, foram encontrados dois modos coletivos de oscilação, um de mais alta frequência que chamamos plasmon superior (a versão em não equilíbrio do conhecido plasmon intrasubbanda) e outro, menor em frequência, o plasmon inferior (uma espécie de modo acústico). A mais, foram identificados também duas bandas caraterísticas dos contínuos de excitações individuais, a de elétrons e a de buracos. Obtivemos expressões analíticas para a relação de disperssão do plasmon superior e estudamos seu comportamento com a intensidade: A baixos níveis de radiação, a frequência do plasmon superior aumenta monotónicamente com a intensidade entanto que a altas intensidades a frequência atinge um máximo e começa diminuir até se anular numa intensidade crítica; além desta intensidade a frequência se toma imaginária. Este fenômeno está relacionado a uma mudança no regime do movimento do plasmon, que vai de oscilatório amortecido a super-amortecido

ASSUNTO(S)

processos irreversiveis termodinamica estatistica

Documentos Relacionados