The impact of two-dimensional pulsed-field gel electrophoresis techniques for the consistent and complete mapping of bacterial genomes: refined physical map of Pseudomonas aeruginosa PAO.

AUTOR(ES)
RESUMO

The SpeI/DpnI map of the 5.9 Mb Pseudomonas aeruginosa PAO (DSM 1707) genome was refined by two-dimensional (2D) pulsed-field gel electrophoresis techniques (PFGE) which allow the complete and consistent physical mapping of any bacterial genome of interest. Single restriction digests were repetitively separated by PFGE employing different pulse times and ramps in order to detect all bands with optimum resolution. Fragment order was evaluated from the pattern of 2D PFGE gels: 1. Partial-complete digestion. A partial restriction digest was separated in the first dimension, redigested to completion, and subsequently perpendicularly resolved in the second dimension. 2D-gel comparisons of the ethidium bromide stain of all fragments and of the autoradiogram of end-labeled partial digestion fragments was nearly sufficient for the construction of the macrorestriction map. 2. Reciprocal gels. A complete restriction digest with enzyme A was run in the first dimension, redigested with enzyme B, and separated in the second orthogonal direction. The order of restriction digests was reverse on the second gel. In case of two rare-cutters, fragments were visualized by ethidium bromide staining or hybridization with genomic DNA. If a frequent and a rare cutter were employed, linking fragments were identified by end-labeling of the first digest. 3. A few small fragments were isolated by preparative PFGE and used as a probe for Southern analysis.--38 SpeI and 15 DpnI fragments were positioned on the map. The zero point was relocated to the 'origin of replication'. The anonymous mapping techniques described herein are unbiased by repetitive DNA, unclonable genomic regions, unfavourable location of restriction sites, or cloning artifacts as frequently encountered in other top-down or bottom-up approaches.

Documentos Relacionados