The midcycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. Possible role for interleukin-1, a putative intermediary in the ovulatory process.

AUTOR(ES)
RESUMO

This study characterizes the rat ovary as a site of hormonally dependent glucose transporter (Glut) expression, and explores the potential role of interleukin (IL)-1, a putative intermediary in the ovulatory process, in this regard. Molecular probing throughout a simulated estrous cycle revealed a significant surge in ovarian Glut3 (but not Glut1) expression at the time of ovulation. Treatment of cultured whole ovarian dispersates from immature rats with IL-1beta resulted in upregulation of the relative abundance of the Glut1 (4.5-fold) and Glut3 (3.5-fold) proteins as determined by Western blot analysis. Other members of the Glut family (i.e., Gluts 2, 4, and 5) remained undetectable. The ability of IL-1 to upregulate Glut1 and Glut3 transcripts proved time-, dose-, nitric oxide-, and protein biosynthesis-dependent but glucose independent. Other ovarian agonists (i.e., TNF alpha, IGF-I, interferon-gamma, and insulin) were without effect. Taken together, our findings establish the mammalian ovary as a site of cyclically determined Glut1 and Glut3 expression, and disclose the ability of IL-1 to induce the ovarian expression as well as translation of Glut1 and Glut3 (but not of Gluts 2, 4, or 5). Our observations also establish IL-1 as the first known regulator of Glut3, the most efficient Glut known to date. In so doing, IL-1, a putative component of the ovulatory process, may be acting to meet the increased metabolic demands imposed on the growing follicle and the ovulated cumulus-enclosed oocyte.

Documentos Relacionados