The p95 Gene of Bombyx mori Nuclear Polyhedrosis Virus: Temporal Expression and Functional Properties

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

As part of our effort to identify baculovirus proteins acting as transcriptional regulators, we have characterized a gene, p95, of Bombyx mori nuclear polyhedrosis virus (BmNPV) that encompasses an open reading frame for a putative 95-kDa polypeptide (P95). The N-terminal half of the conceptually translated P95 contains two zinc finger-type DNA-binding motifs, and its C terminus contains a proline-rich region reminiscent of transcriptional activation regions. Northern blot analysis indicates that two mRNA species, 3.5 and 1.7 kb in size, are transcribed from the p95 gene at different times postinfection. These two mRNA species are produced by differential polyadenylation site usage. While the longer transcript can encode the P95 protein, the shorter one may encode a prematurely terminated version of the P95 polypeptide produced by ribosome frameshifting occurring at heptanucleotide “slippage” sites located near the relevant polyadenylation site. Transcription of the p95 gene is initiated at a proximal site located 70 nucleotides upstream of the translation start codon of P95, a middle site located 170 nucleotides from the start codon, and a set of three closely spaced distal sites located 385, 390, and 409 nucleotides from the translation start codon. The middle and distant initiation sites are utilized before and after BmNPV DNA replication, while transcripts initiated at the proximal site occur largely during the late and very late stages of viral infection. Transient-expression assays indicate that P95 can stimulate gene expression driven by the promoter of its own gene and the promoter of the cytoplasmic actin gene of B. mori. The P95-mediated trans activation can be further augmented by BmIE1, an immediate-early gene product of BmNPV. In contrast to the case with the actin promoter, however, the promoter of the p95 gene can be trans activated by the product of its own gene only in the presence of BmIE1. Our data suggest that proteins P95 and BmIE1 of BmNPV and, by analogy, those of other baculoviruses may interact with each other and synergize to potentiate transcription.

Documentos Relacionados