The reduced virulence of the thymotropic Moloney murine leukemia virus derivative MoMuLV-TB is mapped to 11 mutations within the U3 region of the long terminal repeat.

AUTOR(ES)
RESUMO

Chimeric constructs were generated by exchanging genomic fragments between the potent T-cell lymphoma inducer Moloney murine leukemia virus (MoMuLV) and its derivative MoMuLV-TB, which induces T-cell lymphoma after a relatively longer latent period. Analysis of the T-cell lymphoma-inducing potential of the hybrid viruses that were obtained localized the primary determinant critical to efficient T-cell lymphoma induction to the MoMuLV ClaI-XbaI fragment which comprises 48 nucleotides (nt) of p15E, p2E, the 3'-noncoding sequence, and 298 nt of U3. The 438-base-pair ClaI-XbaI fragments of MoMuLV and MoMuLV-TB differed in only 11 nt. Nine mutations were found within the enhancer. These mutations occurred within the two CORE, the two GRE-LVa, and two of the four NF1 nuclear factor-binding motifs. MoMuLV-TB replicated better than MoMuLV in thymus-bone marrow (TB) cells, a cultured cell line of lymphoid origin. In addition, MoMuLV-TB and NwtTB-2, a recombinant virus with the ClaI-SmaI fragment of MoMuLV-TB in a MoMuLV background, replicated in thymocytes as efficiently as did MoMuLV or TBNwt-2, the reciprocal recombinant virus, with the ClaI-SmaI fragment of MoMuLV in a MoMuLV-TB background. Like NwtTB-4, a recombinant virus with the ClaI-XbaI fragment of MoMuLV-TB in a MoMuLV background, NwtTB-2 induced lymphoma after a long latent period. The finding given above suggests that thymotropism is not the only factor that determines the T-cell lymphoma-inducing potential of MoMuLV. It appears likely that mutations in one or more of the MoMuLV-TB nuclear factor-binding motifs may have altered the interaction of the enhancer with specific nuclear factors; this, in turn, may affect the T-cell lymphoma-inducing potential of MoMuLV-TB.

Documentos Relacionados