The Role of Gcr1p in the Transcriptional Activation of Glycolytic Genes in Yeast Saccharomyces Cerevisiae

AUTOR(ES)
RESUMO

To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleotides containing both CT- and RPG-boxes conferred strong UAS activity. Likewise, a lone CT-box did not show any UAS activity. By contrast, oligonucleotides containing tandem CT-boxes but no RPG-box conferred strong promoter activity. This UAS activity was not dependent on position or orientation of the oligonucleotides in the 5' noncoding region. However, it was dependent on both GCR1 and GCR2. These results suggest that the ability of Gcr1p to bind Gcr1p-binding sites in vivo is not absolutely dependent on Rap1p. Eleven independent mutants of GCR1 were isolated that conferred weak UAS activity to a single CT-box. Five mutants had single mutations in Gcr1p's DNA-binding domain and displayed slightly higher affinity for the CT-box. These results support the hypothesis that Gcr1p and Gcr2p play the central role in glycolytic gene expression and that the function of Rap1p is to facilitate the binding of Gcr1p to its target.

Documentos Relacionados