The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly.

AUTOR(ES)
RESUMO

Recently, the vesicular stomatitis virus matrix (M) protein has been shown to be capable of inhibition of host cell-directed transcription in the absence of other viral components (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). M protein is a major structural protein that is known to play a critical role in virus assembly by binding the helical ribonucleoprotein core of the virus to the cytoplasmic surface of the cell plasma membrane during budding. In this study, two M protein mutants were tested to determine whether the inhibition of host transcription by M protein is an indirect effect of its function in virus assembly or whether it represents an independent function of M protein. The mutant M protein of the conditionally temperature-sensitive (ts) vesicular stomatitis virus mutant, tsO82, was found to be defective in its ability to inhibit host-directed gene expression, as shown by its inability to inhibit expression of a cotransfected target gene encoding chloramphenicol acetyltransferase. The ability of the tsO82 M protein to function in virus assembly was similar to that of wild-type M protein, as shown by its ability to complement the group III ts M protein mutant, tsO23. Another mutant, MN1, which lacks amino acids 4 to 21 of M protein demonstrated that the abilities of M protein to inhibit chloramphenicol acetyltransferase gene expression and to localize to the nucleus were unaffected by deletion of this lysine-rich amino-terminal region but that the ability to function in virus assembly was ablated. Thus, the two M protein mutants examined in this study exhibited complementary phenotypes: tsO82 M protein functioned in virus assembly but was defective in inhibition of host-directed gene expression, while MN1 M protein functioned in inhibiting gene expression but was unable to function in virus assembly. These data demonstrate that the role of M protein in inhibition of host transcription can be separated genetically from its role in virus assembly.

Documentos Relacionados