Theoretical and Experimental Exclusion of Errors in the Determination of the Elasticity and Water Transport Parameters of Plant Cells by the Pressure Probe Technique 12

AUTOR(ES)
RESUMO

The volumetric elastic modulus of the cell wall and the hydraulic conductivity of the cell membranes were measured on ligatured compartments of different sizes of Chara corallina internodes using the pressure probe technique. The ratio between intact cell surface area and the area of puncture in the cell wall and membrane introduced by the microcapillary of the pressure probe was varied over a large range by inserting microcapillaries of widely varying diameters in different sized compartments. The relationship of the elastic modulus and the hydraulic conductivity to turgor pressure was independent of the ratio of intact cell surface area to the area of injury. The increase in the hydraulic conductivity below 2 bar turgor pressure and the volume dependence of the elastic modulus were shown to be the same as those observed in intact nonligatured cells. Theoretical considerations of the possible influence of injury of the cell wall and cell membrane around the inserted microcapillary on the measurement of the water transport and cell wall parameters do not explain the experimental findings. Thus, mechanical artifacts, if at all present, are too small to account for the observed dependence of the hydraulic conductivity and the elastic modulus on turgor pressure. The pressure probe technique thus represents an accurate method for measuring water transport parameters in both giant algal cells and in tissue cells of higher plants.

Documentos Relacionados