Thermostable archaeal O6-alkylguanine-DNA alkyltransferases

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

Archaea represent some of the most ancient organisms on earth, and they have relatively uncharacterized DNA repair processes. We now show, using an in vitro assay, that extracts of two Crenarchaeota (Sulfolobus acidocaldarius and Pyrobaculum islandicum) and two Euryarchaeota (Pyrococcus furiosus and Thermococcus litoralis) contain the DNA repair protein O6-alkylguanine-DNA alkyltransferase (ATase). The ATase activities found in the archaea were extremely thermostable, with half-lives at 80°C ranging from 0.5 hr (S. acidocaldarius) to 13 hr (T. litoralis). The temperature optima of the four proteins ranged from ≈75 to ≈100°C, although activity was seen at 37°C, the temperature optimum of the Escherichia coli and human ATases. In all cases, preincubaton of extracts with a short oligonucleotide containing a single O6-methylguanine residue caused essentially complete loss of ATase activity, suggesting that the alkylphosphotriester-DNA alkyltransferase activity seen in some prokaryotes is not present in Archaea. The ATase from Pyrobaculum islandicum had an apparent molecular mass of 15 kDa, making it the smallest of these proteins so far described. In higher organisms, ATase is responsible for the repair of toxic and mutagenic O6-alkylguanine lesions in alkylated DNA. The presence of ATase in these primitive organisms therefore suggests that endogenous or exogenous exposure to agents that generate appropriate substrates in DNA may be an early event in evolution.

Documentos Relacionados