Transcriptional and posttranscriptional components of psbA response to high light intensity in Synechococcus sp. strain PCC 7942.

AUTOR(ES)
RESUMO

The psbA genes, which encode the D1 protein of photosystem II, constitute a multigene family in the cyanobacterium Synechococcus sp. strain PCC 7942. Levels of messages from the three psbA genes change rapidly when cells are shifted from low-light to high-light conditions: the psbAI message level drops, whereas psbAII and psbAIII message levels increase dramatically. We examined the potential contributions of transcriptional and posttranscriptional processes in these high-light responses by subjecting cells that had been grown in a turbidostat at a standard light intensity (130 microeinsteins [microE] m-2 s-1) to either the same or a higher light intensity (500 microE m-2 s-1) in the presence or absence of rifampin. Northern (RNA blot) analysis of RNA isolated from cells subjected to high light showed that the increases in psbAII and psbAIII transcripts were blocked by rifampin. This suggests a transcriptional induction of these genes at high light intensities. Increased mRNA stability does not contribute to their accumulation in high-light conditions, since their half-life values did not increase relative to the half-lives measured at the standard light intensity. The rate of disappearance of the psbAI transcript in cells shifted to high light was diminished when either transcription or translation was blocked by rifampin or chloramphenicol, suggesting that accelerated degradation of the message requires de novo synthesis of a protein factor. When rifampin was added 10 min after the shift to high light intensity rather than before the shift, psbAI and psbAIII messages, but not the psbAII message, decayed at a faster rate. Susceptibility of the psbAIII transcript to the high-light-induced factor was also demonstrated by addition of chloramphenicol prior to the shaft to high light. psbAIII transcript levels went up more than twofold higher in chloramphenicol-treated cells than in untreated cells, whereas psbAII transcript levels were affected by the inhibitor. These experiments provide evidence that either new or increased synthesis of a degradation factor which affects a subset of Synechococcus transcripts occurs in cells subjected to high light intensity.

Documentos Relacionados