Transcriptional complexity of vaccinia virus in vivo and in vitro.

AUTOR(ES)
RESUMO

The transcriptional complexity of vaccinia virus both in vivo and in vitro has been measured by using DNA:RNA hybridization with RNA in excess. In vivo, "early" or prereplicative RNA was found to saturate at 25% or one-half of the viral genome. "Late" or postreplicative RNA from infected HeLa cells saturated at 52% or essentially the entire genome. This well-regulated transcriptional pattern of the virus in vivo was not maintained in vitro. In a number of experiments a range of saturation values from 40 to 50% was obtained for in vitro synthesized RNA. The complexity of polyadenylated and non-polyadenylated RNA, as well as total purified 8 to 12S RNA released from the virus, was indistinguishable from purified high-molecular-weight virion-associated RNA with a sedimentation value of greater than 20S and equivalent to total in vitro synthesized RNA. No additional hybrid formation was observed in experiments in which total in vitro RNA and late in vivo RNA from infected HeLa cells were combined, suggesting that the virus does not transcribe in vitro DNA sequences that are not also transcribed during productive infection. Approximately 15% complementary RNA was detected when radiolabeled total in vitro RNA was allowed to reanneal with late in vivo RNA, while as much as 8% of the in vitro synthesized RNA was found to be complementary.

Documentos Relacionados