Transformation of catecholaminergic precursors into glucagon (A) cells in mouse embryonic pancreas.

AUTOR(ES)
RESUMO

In embryonic mice, the catecholamine biosynthetic enzyme tyrosine hydroxylase [L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] can be visualized immunocytochemically in a population of cells in epithelial cords of the developing pancreas. These embryonic catecholamine cells, first seen by day 11, are large and vacuolated and have a folded nuclear membrane. One day later, at day 12, glucagon is first detected immunocytochemically in pancreatic cells similar in location and morphology to the embryonic catecholamine cells. By use of a method for detecting both antigens in the same cell, both the hydroxylase and glucagon can be visualized between day 12 and day 14 in 10-40% of stained cells. From day 14, the number of cells stained for hydroxylase decreases; they cannot be detected after day 18. In contrast, the cells containing glucagon increase during development and persist throughout life. Endocrine cells of the embryonic pancreas also contain dopa decarboxylase but not dopamine-beta-hydroxylase or phenylethanolamine-N-methyl transferase. In adult mice, small cells containing tyrosine hydroxylase but differing in location and morphology from the embryonic catecholaminergic cells are seen in pancreatic islets. The adult catecholaminergic cells never store glucagon. We suggest that adult glucagon (A)-containing cells arise from transformation in situ of cells that transiently express a catecholaminergic (probably dopaminergic) phenotype. These results suggest that one class of peptidergic cells may arise from transformation of an aminergic precursor.

Documentos Relacionados