Transient contraction of muscle fibers on photorelease of ATP at intermediate concentrations of Ca2+.

AUTOR(ES)
RESUMO

We isometrically activated skinned fibers in rigor by flash photolysis of caged ATP at various [Ca2+] at 8 degrees C. On release of ATP, tension initially decreased with the same time course at all [Ca2+]. At high [Ca2+] (pCa < or = 5.8), tension rose to the steady-state plateau after the brief relaxation. When the [Ca2+] was intermediate (7.0 < or = pCa < or = 6.0), tension temporarily overshot the final steady-state level. The half-time during this tension transient was longer at higher [Ca2+]. The transient contractions could be simulated by a simple kinetic model: R + ATP-->Q, and X<-->Q<-->A, where R, X, and A are the rigor, relaxed, and active-tension states, respectively; Q is a "pre-active" state where tension is very low; and Ca2+ affects only the X-Q transition. This scheme was also useful for predicting the tension transients in Ca(2+)- and P(i)-jump experiments at various [Ca2+]. ADP enhanced the Ca2+ sensitivity of the ATP-induced transient contraction, which was not in the scope of the model.

Documentos Relacionados