Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis.

AUTOR(ES)
RESUMO

Coagulase-negative staphylococci have emerged as important pathogens in infections associated with intravascular devices. Microbial adherence to biomaterial surfaces is a crucial step in the pathogenesis of these infections. Staphylococcal surface proteins (herein referred to as SSP-1 and SSP-2) are involved in the attachment of Staphylococcus epidermidis 354 to polystyrene. In the present study we show that the adhesin protrudes from the cell surface as a fimbria-like polymer. Furthermore, in vitro proteolytic cleavage of SSP-1 produces an SSP-2-like protein which coincides with a loss of adhesive function. SSP-1 expression is down-regulated in a phenotypical variant of S. epidermidis 354 whereas SSP-2 expression is not. These results could suggest that proteolytic cleavage is a key to the regulation of the adhesive state of S. epidermidis in vivo.

Documentos Relacionados