Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi.

AUTOR(ES)
RESUMO

The nucleotide sequence of the cenB gene was determined and used to deduce the amino acid sequence of endoglucanase B (CenB) of Cellulomonas fimi. CenB comprises 1,012 amino acids and has a molecular weight of 105,905. The polypeptide is divided by so-called linker sequences rich in proline and hydroxyamino acids into five domains: a catalytic domain of 607 amino acids at the N terminus, followed by three repeats of 98 amino acids each which are greater than 60% identical, and a C-terminal domain of 101 amino acids which is 50% identical to the cellulose-binding domains of C. fimi cellulases Cex and CenA. A deletion mutant of the cenB gene encodes a polypeptide lacking the C-terminal 333 amino acids of CenB. The truncated polypeptide is catalytically active and, like intact CenB, binds to cellulose, suggesting that CenB has a second cellulose-binding site. The sequence of amino acids 1 to 461 of CenB is 35% identical, with a further 15% similarity, to that of a cellulase from avocado, which places CenB in cellulase family E. CenB releases mostly cellobiose and cellotetraose from cellohexaose. Like CenA, CenB hydrolyzes the beta-1,4-glucosidic bond with inversion of the anomeric configuration. The pH optimum for CenB is 8.5, and that for CenA is 7.5.

Documentos Relacionados