Use of transformation to construct antigenic hybrids of the class 1 outer membrane protein in Neisseria meningitidis.

AUTOR(ES)
RESUMO

The class 1 protein of Neisseria meningitidis is an important component of candidate outer membrane vaccines against meningococcal meningitis. This porin protein contains two variable regions which determine subtype specificity and provide binding sites for bactericidal monoclonal antibodies. To determine the contribution of each of these variable regions in the induction of bactericidal antibodies, a set of isogenic strains differing only in their class 1 epitopes was constructed. This was done by transformation of meningococcal strain H44/76 with cloned class 1 genes and selection of the desired epitope combinations in a colony blot with subtype-specific monoclonal antibodies. When used for the immunization of mice, outer membrane complexes induced bactericidal antibodies only against meningococcal strains sharing at least one of their class 1 epitopes. The results demonstrate that the P1.2 and P1.16 epitopes, normally located in the fourth exposed loop of the protein, efficiently induce bactericidal antibodies independently of the particular sequence in the first variable region. The P1.5 and P1.7 epitopes, normally located in the first exposed loop, were found to induce lower bactericidal titers. Hybrid class 1 outer membrane proteins were constructed by inserting oligonucleotides encoding the P1.7 and P1.16 epitopes into the porA gene. In this way, we obtained a set of strains which carry the P1.5 epitope in loop 1, P1.2 in loop 4, and P1.7 and P1.16 (separately or in combination) in either loop 5 or loop 6. The additional epitopes were found to be exposed at the cell surface. Outer membrane complexes from several of these strains were found to induce a bactericidal response in mice against the inserted epitopes. These results demonstrate that it is feasible to construct meningococcal strains carrying multivalent class 1 proteins in which multiple subtype-specific epitopes are present in different cell surface-exposed loops.

Documentos Relacionados