Vesicular stomatitis virus mutant with altered polyadenylic acid polymerase activity in vitro.

AUTOR(ES)
RESUMO

In vitro RNA synthesis by purified virions of a stock of tsG16(I) was aberrant compared with that of wild-type (wt) vesicular stomatitis virus. RNA made in vitro by tsG16(I) contained a larger proportion of A residues in polyadenylic acid [poly(A)] tracts than did RNA synthesized by wt virus, tsG13(I), tsG21(II) or tsG41(IV). Experiments to determine whether the aberrant polyadenylation was correlated with the known thermolability of the tsG16(I) L protein were inconclusive. Total product RNA made by tsG16(I) was methylated to almost the same extent as wt RNA, contained the same major methylated 5' cap structure as wt RNA, and was translated as well in a reticulocyte cell-free system, yielding the same molecular weight proteins in similar ratios. Most polyadenylated [poly(A)+] RNA made by tsG16(I) was considerably larger than wt poly(A)+ RNA and richer in AMP:UMP residues; however, the protein-coding capacities of mutant and wt poly(A)+ RNAs were similar. This suggested that most mRNAs made in vitro by tsG16(I) might possess very long poly(A)+ tracts, and digestion of RNA by T1 RNase supported this. It appeared, therefore, that a virally coded component of vesicular stomatitis virus could affect polyadenylation. This could be the poly(A) polymerase itself, a protein involved in control of polyadenylation, or a protein which affects an event spatially and temporally connected with polyadenylation (such as initiation of the subsequent mRNA).

Documentos Relacionados