Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro.

AUTOR(ES)
RESUMO

Many RNA viruses express part of their genomic information by read-through over internal termination codons. We have recently characterized tobacco cytoplasmic (cyt) and chloroplast (chl) tRNACmCATrp and tRNAGCACys as natural suppressor tRNAs that are able to read the leaky UGA codon in RNA-1 of tobacco rattle virus, albeit with different efficiencies. Here we have identified a third natural UGA suppressor in plants. We have purified and sequenced four cyt tRNAArg isoacceptors with ICG, CCG, U*CG and CCU anticodons from wheat germ. With the exception of tRNAICGArg, these are the first sequences of plant tRNAsArg. In order to study the potential suppressor activity of wheat tRNAsArg we have used in vitro synthesized mRNA transcripts in which different viral read-through regions had been placed. In vitro translation was carried out in a homologous wheat germ extract. We found that tRNAU*CGArg is an efficient UGA suppressor in vitro, whereas the other three tRNAArg isoacceptors exhibit no or very low suppressor activity. Interaction of tRNAU*CGArg with the UGA codon requires a G:U base pair at the third anticodon position. This is the first time that an arginine-accepting tRNA has been characterized as a natural UGA suppressor. A remarkable feature of cyt tRNAU*CGArg is its ability to misread the UGA at the end of the coat protein cistron in RNA-1 of pea enation mosaic virus, which is not accomplished by cyt tRNACmCATrp or cyt tRNAGCACys, due to an unfavourable codon context.

Documentos Relacionados