Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: insights into the biogenesis of a mitochondrial RNA-processing enzyme.

AUTOR(ES)
RESUMO

Rpm2p is a protein subunit of Saccharomyces cerevisiae yeast mitochondrial RNase P, an enzyme which removes 5' leader sequences from mitochondrial tRNA precursors. Precursor tRNAs accumulate in strains carrying a disrupted allele of RPM2. The resulting defect in mitochondrial protein synthesis causes petite mutants to form. We report here that alteration in the biogenesis of Rpm1r, the RNase P RNA subunit, is another consequence of disrupting RPM2. High-molecular-weight transcripts accumulate, and no mature Rpm1r is produced. Transcript mapping reveals that the smallest RNA accumulated is extended on both the 5' and 3' ends relative to mature Rpm1r. This intermediate and other longer transcripts which accumulate are also found as low-abundance RNAs in wild-type cells, allowing identification of processing events necessary for conversion of the primary transcript to final products. Our data demonstrate directly that Rpm1r is transcribed with its substrates, tRNA met f and tRNAPro, from a promoter located upstream of the tRNA met f gene and suggest that a portion also originates from a second promoter, located between the tRNA met f gene and RPM1. We tested the possibility that precursors accumulate because the RNase P deficiency prevents the removal of the downstream tRNAPro. Large RPM1 transcripts still accumulate in strains missing this tRNA. Thus, an inability to process cotranscribed tRNAs does not explain the precursor accumulation phenotype. Furthermore, strains with mutant RPM1 genes also accumulate precursor Rpm1r, suggesting that mutations in either gene can lead to similar biogenesis defects. Several models to explain precursor accumulation are presented.

Documentos Relacionados